Step of Proof: linorder_functionality_wrt_iff 12,41

Inference at * 1 
Iof proof for Lemma linorder functionality wrt iff:



1. T : Type
2. R : TT
3. R' : TT
4. xy:TR(x,y R'(x,y)
  (Order(T;x,y.R(x,y)) & Connex(T;x,y.R(x,y)))
   (Order(T;x,y.R'(x,y)) & Connex(T;x,y.R'(x,y))) 
latex

 by InteriorProof ((RWH (HypC 4) 0) 
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
CollapseTHEN ((Aut),(first_nat 3:n)) (first_tok :t) inil_term))) 
latex


C.


Definitionsx:AB(x), P  Q, P  Q, x,yt(x;y), P & Q, t  T, x(s1,s2), P  Q,
Lemmasconnex functionality wrt iff, order functionality wrt iff, and functionality wrt iff, iff functionality wrt iff, connex wf, order wf

origin